试验设备

各种机器学习算法的实验结果和基础理论比对

发布时间:2022/6/27 16:31:51   
得了白癜风好治疗吗 http://pf.39.net/bdfyy/bdfrczy/160317/4791291.html

机器学习领域近年的发展非常迅速,然而我们对机器学习理论的理解还很有限,有些模型的实验效果甚至超出了我们对基础理论的理解。

目前,领域内越来越多的研究者开始重视和反思这个问题。近日,一位名为AidanCooper的数据科学家撰写了一篇博客,梳理了模型的实验结果和基础理论之间的关系。以下是博客原文:

机器学习领域中,有些模型非常有效,但我们并不能完全确定其原因。相反,一些相对容易理解的研究领域则在实践中适用性有限。本文基于机器学习的效用和理论理解,探讨各个子领域的进展。

这里的「实验效用」是一种综合考量,它考虑了一种方法的适用性广度、实施的难易程度,以及最重要的因素,即现实世界中的有用程度。有些方法不仅实用性高,适用范围也很广;而有些方法虽然很强大,但仅限于特定的领域。可靠、可预测且没有重大缺陷的方法则被认为具有更高的效用。

所谓理论理解,就是要考虑模型方法的可解释性,即输入与输出之间是什么关系,怎样才能获得预期的结果,这种方法的内部机制是什么,并考量方法涉及文献的深度和完整性。

理论理解程度低的方法在实现时通常会采用启发式方法或大量试错法;理论理解程度高的方法往往具有公式化的实现,具有强大的理论基础和可预测的结果。较简单的方法(例如线性回归)具有较低的理论上限,而更复杂的方法(例如深度学习)具有更高的理论上限。当谈到一个领域内文献的深度和完整性时,则根据该领域假设的理论上限来评估该领域,这在一定程度上依赖于直觉。

我们可以将效用矩阵构造为四个象限,坐标轴的交点代表一个假设的参考领域,具有平均理解和平均效用。这种方法使得我们能够根据各领域所在的象限以定性的方式解释它们,如下图所示,给定象限中的领域可能具有部分或全部该象限对应的特征。

一般来说,我们期望效用和理解是松散相关的,使得理论理解程度高的方法比理解程度低的更有用。这意味着大多数领域应位于左下象限或右上象限。远离左下-右上对角线的领域代表着例外情况。通常,实际效用应落后于理论,因为将新生的研究理论转化为实际应用需要时间。因此,该对角线应该位于原点上方,而不是直接穿过它。年的机器学习领域并非上图所有领域都完全包含在机器学习(ML)中,但它们都可以应用于ML的语境中或与之密切相关。许多被评估的领域是重叠的,并且无法清晰地描述:强化学习、联邦学习和图ML的高级方法通常基于深度学习。因此,我考虑了它们理论与实际效用的非深度学习方面。右上象限:高理解、高效用线性回归是一种简单、易于理解且高效的方法。虽然经常被低估和忽视。但它的使用广度和透彻的理论基础让其处于图中右上角的位置。传统的机器学习已经发展为一个高度理论理解和实用的领域。复杂的ML算法,例如梯度提升决策树(GBDT),已被证明在一些复杂的预测任务中通常优于线性回归。大数据问题无疑就是这种情况。可以说,对过参数化模型的理论理解仍然存在漏洞,但实现机器学习是一个精细的方法论过程,只要做得好,模型在行业内也能可靠地运行。然而,额外的复杂性和灵活性确实会导致出现一些错误,这就是为什么我将机器学习放在线性回归的左侧。一般来说,有监督的机器学习比它的无监督对应物更精细,更有影响力,但两种方法都有效地解决了不同的问题空间。贝叶斯方法拥有一群狂热的从业者,他们宣扬它优于更流行的经典统计方法。在某些情况下,贝叶斯模型特别有用:仅点估计是不够的,不确定性的估计很重要;当数据有限或高度缺失时;并且当您了解要在模型中明确包含的数据生成过程时。贝叶斯模型的实用性受到以下事实的限制:对于许多问题,点估计已经足够好,人们只是默认使用非贝叶斯方法。更重要的是,有一些方法可以量化传统ML的不确定性(它们只是很少使用)。通常,将ML算法简单地应用于数据会更容易,而不必考虑数据生成机制和先验。贝叶斯模型在计算上也很昂贵,并且如果理论进步产生更好的采样和近似方法,那么它会具有更高的实用性。右下象限:低理解,高效用与大多数领域的进展相反,深度学习取得了一些惊人的成功,尽管理论方面被证明从根本上难以取得进展。深度学习体现了一种鲜为人知的方法的许多特征:模型不稳定、难以可靠地构建、基于弱启发式进行配置以及产生不可预测的结果。诸如随机种子“调整”之类的可疑做法非常普遍,而且工作模型的机制也很难解释。然而,深度学习继续推进并在计算机视觉和自然语言处理等领域达到超人的性能水平,开辟了一个充满其他难以理解的任务的世界,如自动驾驶。假设,通用AI将占据右下角,因为根据定义,超级智能超出了人类的理解范围,可以用于解决任何问题。目前,它仅作为思想实验包含在内。每个象限的定性描述。字段可以通过其对应区域中的部分或全部描述来描述左上象限:高理解,低效用大多数形式的因果推理不是机器学习,但有时是,并且总是对预测模型感兴趣。因果关系可以分为随机对照试验(RCT)与更复杂的因果推理方法,后者试图从观察数据中测量因果关系。RCT在理论上很简单并给出严格的结果,但在现实世界中进行通常既昂贵又不切实际——如果不是不可能的话——因此效用有限。因果推理方法本质上是模仿RCT,而无需做任何事情,这使得它们的执行难度大大降低,但有许多限制和陷阱可能使结果无效。总体而言,因果关系仍然是一个令人沮丧的追求,其中当前的方法通常不能满足我们想要提出的问题,除非这些问题可以通过随机对照试验进行探索,或者它们恰好适合某些框架(例如,作为“自然实验”的偶然结果)。联邦学习(FL)是一个很酷的概念,却很少受到

转载请注明:http://www.aideyishus.com/lkjg/766.html
------分隔线----------------------------

热点文章

  • 没有热点文章

推荐文章

  • 没有推荐文章